Portfolio optimization when asset returns have the Gaussian mixture distribution

نویسندگان

  • Ian Buckley
  • David Saunders
  • Luis Seco
چکیده

Portfolios of assets whose returns have the Gaussian mixture distribution are optimized in the static setting to find portfolio weights and efficient frontiers using the probability of outperforming a target return and Hodges’ modified Sharpe ratio objective functions. The sensitivities of optimal portfolio weights to the probability of the market being in the distressed regime are shown to give valuable diagnostic information. A two-stage optimization procedure is presented in which the high-dimensional non-linear optimization problem can be decomposed into a related quadratic programming problem, coupled to a lower-dimensional non-linear problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher moments portfolio Optimization with unequal weights based on Generalized Capital Asset pricing model with independent and identically asymmetric Power Distribution

The main criterion in investment decisions is to maximize the investors utility. Traditional capital asset pricing models cannot be used when asset returns do not follow a normal distribution. For this reason, we use capital asset pricing model with independent and identically asymmetric power distributed (CAPM-IIAPD) and capital asset pricing model with asymmetric independent and identically a...

متن کامل

Bayesian Portfolio Selection in a Markov Switching Gaussian Mixture Model

Departure from normality poses implementation barriers to the Markowitz mean-variance portfolio selection. When assets are affected by common and idiosyncratic shocks, the distribution of asset returns may exhibit Markov switching regimes and have a Gaussian mixture distribution conditional on each regime. The model is estimated in a Bayesian framework using the Gibbs sampler. An application to...

متن کامل

بهینه‌سازی چند دوره‌ای سبد سرمایه بر اساس اندازه ریسک احتمالی و مدل ( AR(1)-GARCH(1,1

In this paper, we solve the multi-period portfolio optimization problem under new assumptions. Recently, the authors examined some distributions instead of Gaussian to fit returns to improve the optimization problem and indicated, by Kolmogorov-Smirnov test, that the Kernel density estimator is the best one. In the present paper, we consider the most appropriate distribution of each asset in ea...

متن کامل

Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model

In this paper, we propose a multivariate market model with returns assumed to follow a multivariate normal tempered stable distribution. This distribution, defined by a mixture of the multivariate normal distribution and the tempered stable subordinator, is consistent with two stylized facts that have been observed for asset distributions: fat-tails and an asymmetric dependence structure. Assum...

متن کامل

Leptokurtic Portfolio Theory

The question of optimal portfolio is addressed. The conventional Markowitz portfolio optimisation is discussed and the shortcomings due to non-Gaussian security returns are outlined. A method is proposed to minimise the likelihood of extreme non-Gaussian drawdowns of the portfolio value. The theory is called leptokurtic, because it minimises the effects from ”fat tails” of returns. The leptokur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 185  شماره 

صفحات  -

تاریخ انتشار 2008